
题目描述
给定整数 n
和 k
,返回 [1, n]
中字典序第 k
小的数字。
示例 1:
输入: n = 13, k = 2
输出: 10
解释: 字典序的排列是 [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9],所以第二小的数字是 10。
示例 2:
输入: n = 1, k = 1
输出: 1
提示:
解法
方法一:字典树计数 + 贪心构造
本题要求在区间 \([1, n]\) 中,按字典序排序后,找到第 \(k\) 小的数字。由于 \(n\) 的范围非常大(最多可达 \(10^9\)),我们无法直接枚举所有数字后排序。因此我们采用贪心 + 字典树模拟的策略。
我们将 \([1, n]\) 看作一棵 十叉字典树(Trie):
- 每个节点是一个前缀,根节点为空串;
- 节点的子节点是当前前缀拼接上 \(0 \sim 9\);
- 例如前缀 \(1\) 会有子节点 \(10, 11, \ldots, 19\),而 \(10\) 会有 \(100, 101, \ldots, 109\);
- 这种结构天然符合字典序遍历。
根
├── 1
│ ├── 10
│ ├── 11
│ ├── ...
├── 2
├── ...
我们使用变量 \(\textit{curr}\) 表示当前前缀,初始为 \(1\)。每次我们尝试向下扩展前缀,直到找到第 \(k\) 小的数字。
每次我们计算当前前缀下有多少个合法数字(即以 \(\textit{curr}\) 为前缀、且不超过 \(n\) 的整数个数),记作 \(\textit{count}(\text{curr})\):
- 如果 \(k \ge \text{count}(\text{curr})\):说明目标不在这棵子树中,跳过整棵子树,前缀右移:\(\textit{curr} \leftarrow \text{curr} + 1\),并更新 \(k \leftarrow k - \text{count}(\text{curr})\);
- 否则:说明目标在当前前缀的子树中,进入下一层:\(\textit{curr} \leftarrow \text{curr} \times 10\),并消耗一个前缀:\(k \leftarrow k - 1\)。
每一层我们将当前区间扩大 \(10\) 倍,向下延伸到更长的前缀,直到超出 \(n\)。
时间复杂度 \(O(\log^2 n)\),空间复杂度 \(O(1)\)。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution:
def findKthNumber(self, n: int, k: int) -> int:
def count(curr):
next, cnt = curr + 1, 0
while curr <= n:
cnt += min(n - curr + 1, next - curr)
next, curr = next * 10, curr * 10
return cnt
curr = 1
k -= 1
while k:
cnt = count(curr)
if k >= cnt:
k -= cnt
curr += 1
else:
k -= 1
curr *= 10
return curr
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
private int n;
public int findKthNumber(int n, int k) {
this.n = n;
long curr = 1;
--k;
while (k > 0) {
int cnt = count(curr);
if (k >= cnt) {
k -= cnt;
++curr;
} else {
--k;
curr *= 10;
}
}
return (int) curr;
}
public int count(long curr) {
long next = curr + 1;
long cnt = 0;
while (curr <= n) {
cnt += Math.min(n - curr + 1, next - curr);
next *= 10;
curr *= 10;
}
return (int) cnt;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public:
int n;
int findKthNumber(int n, int k) {
this->n = n;
--k;
long long curr = 1;
while (k) {
int cnt = count(curr);
if (k >= cnt) {
k -= cnt;
++curr;
} else {
--k;
curr *= 10;
}
}
return (int) curr;
}
int count(long long curr) {
long long next = curr + 1;
int cnt = 0;
while (curr <= n) {
cnt += min(n - curr + 1, next - curr);
next *= 10;
curr *= 10;
}
return cnt;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | func findKthNumber(n int, k int) int {
count := func(curr int) int {
next := curr + 1
cnt := 0
for curr <= n {
cnt += min(n-curr+1, next-curr)
next *= 10
curr *= 10
}
return cnt
}
curr := 1
k--
for k > 0 {
cnt := count(curr)
if k >= cnt {
k -= cnt
curr++
} else {
k--
curr *= 10
}
}
return curr
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function findKthNumber(n: number, k: number): number {
function count(curr: number): number {
let next = curr + 1;
let cnt = 0;
while (curr <= n) {
cnt += Math.min(n - curr + 1, next - curr);
curr *= 10;
next *= 10;
}
return cnt;
}
let curr = 1;
k--;
while (k > 0) {
const cnt = count(curr);
if (k >= cnt) {
k -= cnt;
curr += 1;
} else {
k -= 1;
curr *= 10;
}
}
return curr;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | impl Solution {
pub fn find_kth_number(n: i32, k: i32) -> i32 {
fn count(mut curr: i64, n: i32) -> i32 {
let mut next = curr + 1;
let mut total = 0;
let n = n as i64;
while curr <= n {
total += std::cmp::min(n - curr + 1, next - curr);
curr *= 10;
next *= 10;
}
total as i32
}
let mut curr = 1;
let mut k = k - 1;
while k > 0 {
let cnt = count(curr as i64, n);
if k >= cnt {
k -= cnt;
curr += 1;
} else {
k -= 1;
curr *= 10;
}
}
curr
}
}
|