
题目描述
在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
 
示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:

输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:
输入:matrix = [["0"]]
输出:0
 
提示:
    m == matrix.length 
    n == matrix[i].length 
    1 <= m, n <= 300 
    matrix[i][j] 为 '0' 或 '1' 
解法
方法一:动态规划
我们定义 \(dp[i + 1][j + 1]\) 表示以下标 \((i, j)\) 作为正方形右下角的最大正方形边长。答案为所有 \(dp[i + 1][j + 1]\) 中的最大值。
状态转移方程为:
\[
dp[i + 1][j + 1] =
\begin{cases}
0 & \textit{if } matrix[i][j] = '0' \\
\min(dp[i][j], dp[i][j + 1], dp[i + 1][j]) + 1 & \textit{if } matrix[i][j] = '1'
\end{cases}
\]
时间复杂度 \(O(m\times n)\),空间复杂度 \(O(m\times n)\)。其中 \(m\) 和 \(n\) 分别是矩阵的行数和列数。
 | class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        mx = 0
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == '1':
                    dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j], dp[i][j]) + 1
                    mx = max(mx, dp[i + 1][j + 1])
        return mx * mx
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16  | class Solution {
    public int maximalSquare(char[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        int[][] dp = new int[m + 1][n + 1];
        int mx = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
                    mx = Math.max(mx, dp[i + 1][j + 1]);
                }
            }
        }
        return mx * mx;
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17  | class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        int mx = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    dp[i + 1][j + 1] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
                    mx = max(mx, dp[i + 1][j + 1]);
                }
            }
        }
        return mx * mx;
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17  | func maximalSquare(matrix [][]byte) int {
    m, n := len(matrix), len(matrix[0])
    dp := make([][]int, m+1)
    for i := 0; i <= m; i++ {
        dp[i] = make([]int, n+1)
    }
    mx := 0
    for i := 0; i < m; i++ {
        for j := 0; j < n; j++ {
            if matrix[i][j] == '1' {
                dp[i+1][j+1] = min(min(dp[i][j+1], dp[i+1][j]), dp[i][j]) + 1
                mx = max(mx, dp[i+1][j+1])
            }
        }
    }
    return mx * mx
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19  | public class Solution {
    public int MaximalSquare(char[][] matrix) {
        int m = matrix.Length, n = matrix[0].Length;
        var dp = new int[m + 1, n + 1];
        int mx = 0;
        for (int i = 0; i < m; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                if (matrix[i][j] == '1')
                {
                    dp[i + 1, j + 1] = Math.Min(Math.Min(dp[i, j + 1], dp[i + 1, j]), dp[i, j]) + 1;
                    mx = Math.Max(mx, dp[i + 1, j + 1]);
                }
            }
        }
        return mx * mx;
    }
}
  |