
题目描述
你有一个 n x 3 的网格图 grid ,你需要用 红,黄,绿 三种颜色之一给每一个格子上色,且确保相邻格子颜色不同(也就是有相同水平边或者垂直边的格子颜色不同)。
给你网格图的行数 n 。
请你返回给 grid 涂色的方案数。由于答案可能会非常大,请你返回答案对 10^9 + 7 取余的结果。
 
示例 1:
输入:n = 1
输出:12
解释:总共有 12 种可行的方法:
示例 2:
输入:n = 2
输出:54
示例 3:
输入:n = 3
输出:246
示例 4:
输入:n = 7
输出:106494
示例 5:
输入:n = 5000
输出:30228214
 
提示:
    n == grid.length 
    grid[i].length == 3 
    1 <= n <= 5000 
解法
方法一:递推
把每一行所有可能的状态进行分类。根据对称性原理,当一行只有 \(3\) 个元素时,所有合法状态分类为 \(010\) 型以及 \(012\) 型。
- 当状态为 \(010\) 型时:下一行可能的状态为 \(101\), \(102\), \(121\), \(201\), \(202\)。这 \(5\) 个状态可归纳为 \(3\) 个 \(010\) 型,以及 \(2\) 个 \(012\) 型。
 
- 当状态为 \(012\) 型时:下一行可能的状态为 \(101\), \(120\), \(121\), \(201\)。这 \(4\) 个状态可归纳为 \(2\) 个 \(010\) 型,以及 \(2\) 个 \(012\) 型。
 
综上所述,可以得到 \(newf0 = 3 \times f0 + 2 \times f1\), \(newf1 = 2 \times f0 + 2 \times f1\)。
时间复杂度 \(O(n)\),其中 \(n\) 是网格的行数。空间复杂度 \(O(1)\)。
方法二:状态压缩 + 动态规划
我们注意到,网格只有 \(3\) 列,那么一行中最多有 \(3^3=27\) 种不同的涂色方案。
因此,我们定义 \(f[i][j]\) 表示前 \(i\) 行中,第 \(i\) 行的涂色状态为 \(j\) 的方案数。状态 \(f[i][j]\) 由 \(f[i - 1][k]\) 转移而来,其中 \(k\) 是第 \(i - 1\) 行的涂色状态,且 \(k\) 和 \(j\) 满足不同颜色相邻的要求。即:
\[
f[i][j] = \sum_{k \in \textit{valid}(j)} f[i - 1][k]
\]
其中 \(\textit{valid}(j)\) 表示状态 \(j\) 的所有合法前驱状态。
最终的答案即为 \(f[n][j]\) 的总和,其中 \(j\) 是任意合法的状态。
我们注意到 \(f[i][j]\) 只和 \(f[i - 1][k]\) 有关,因此我们可以使用滚动数组优化空间复杂度。
时间复杂度 \(O((m + n) \times 3^{2m})\),空间复杂度 \(O(3^m)\)。其中 \(n\) 和 \(m\) 分别是网格的行数和列数。
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35  | class Solution:
    def numOfWays(self, n: int) -> int:
        def f1(x: int) -> bool:
            last = -1
            for _ in range(3):
                if x % 3 == last:
                    return False
                last = x % 3
                x //= 3
            return True
        def f2(x: int, y: int) -> bool:
            for _ in range(3):
                if x % 3 == y % 3:
                    return False
                x //= 3
                y //= 3
            return True
        mod = 10**9 + 7
        m = 27
        valid = {i for i in range(m) if f1(i)}
        d = defaultdict(list)
        for i in valid:
            for j in valid:
                if f2(i, j):
                    d[i].append(j)
        f = [int(i in valid) for i in range(m)]
        for _ in range(n - 1):
            g = [0] * m
            for i in valid:
                for j in d[i]:
                    g[j] = (g[j] + f[i]) % mod
            f = g
        return sum(f) % mod
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59  | class Solution {
    public int numOfWays(int n) {
        final int mod = (int) 1e9 + 7;
        int m = 27;
        Set<Integer> valid = new HashSet<>();
        int[] f = new int[m];
        for (int i = 0; i < m; ++i) {
            if (f1(i)) {
                valid.add(i);
                f[i] = 1;
            }
        }
        Map<Integer, List<Integer>> d = new HashMap<>();
        for (int i : valid) {
            for (int j : valid) {
                if (f2(i, j)) {
                    d.computeIfAbsent(i, k -> new ArrayList<>()).add(j);
                }
            }
        }
        for (int k = 1; k < n; ++k) {
            int[] g = new int[m];
            for (int i : valid) {
                for (int j : d.getOrDefault(i, List.of())) {
                    g[j] = (g[j] + f[i]) % mod;
                }
            }
            f = g;
        }
        int ans = 0;
        for (int x : f) {
            ans = (ans + x) % mod;
        }
        return ans;
    }
    private boolean f1(int x) {
        int last = -1;
        for (int i = 0; i < 3; ++i) {
            if (x % 3 == last) {
                return false;
            }
            last = x % 3;
            x /= 3;
        }
        return true;
    }
    private boolean f2(int x, int y) {
        for (int i = 0; i < 3; ++i) {
            if (x % 3 == y % 3) {
                return false;
            }
            x /= 3;
            y /= 3;
        }
        return true;
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60  | class Solution {
public:
    int numOfWays(int n) {
        int m = 27;
        auto f1 = [&](int x) {
            int last = -1;
            for (int i = 0; i < 3; ++i) {
                if (x % 3 == last) {
                    return false;
                }
                last = x % 3;
                x /= 3;
            }
            return true;
        };
        auto f2 = [&](int x, int y) {
            for (int i = 0; i < 3; ++i) {
                if (x % 3 == y % 3) {
                    return false;
                }
                x /= 3;
                y /= 3;
            }
            return true;
        };
        const int mod = 1e9 + 7;
        unordered_set<int> valid;
        vector<int> f(m);
        for (int i = 0; i < m; ++i) {
            if (f1(i)) {
                valid.insert(i);
                f[i] = 1;
            }
        }
        unordered_map<int, vector<int>> d;
        for (int i : valid) {
            for (int j : valid) {
                if (f2(i, j)) {
                    d[i].push_back(j);
                }
            }
        }
        for (int k = 1; k < n; ++k) {
            vector<int> g(m);
            for (int i : valid) {
                for (int j : d[i]) {
                    g[j] = (g[j] + f[i]) % mod;
                }
            }
            f = move(g);
        }
        int ans = 0;
        for (int x : f) {
            ans = (ans + x) % mod;
        }
        return ans;
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54  | func numOfWays(n int) (ans int) {
    f1 := func(x int) bool {
        last := -1
        for i := 0; i < 3; i++ {
            if x%3 == last {
                return false
            }
            last = x % 3
            x /= 3
        }
        return true
    }
    f2 := func(x, y int) bool {
        for i := 0; i < 3; i++ {
            if x%3 == y%3 {
                return false
            }
            x /= 3
            y /= 3
        }
        return true
    }
    m := 27
    valid := map[int]bool{}
    f := make([]int, m)
    for i := 0; i < m; i++ {
        if f1(i) {
            valid[i] = true
            f[i] = 1
        }
    }
    d := map[int][]int{}
    for i := range valid {
        for j := range valid {
            if f2(i, j) {
                d[i] = append(d[i], j)
            }
        }
    }
    const mod int = 1e9 + 7
    for k := 1; k < n; k++ {
        g := make([]int, m)
        for i := range valid {
            for _, j := range d[i] {
                g[i] = (g[i] + f[j]) % mod
            }
        }
        f = g
    }
    for _, x := range f {
        ans = (ans + x) % mod
    }
    return
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55  | function numOfWays(n: number): number {
    const f1 = (x: number): boolean => {
        let last = -1;
        for (let i = 0; i < 3; ++i) {
            if (x % 3 === last) {
                return false;
            }
            last = x % 3;
            x = Math.floor(x / 3);
        }
        return true;
    };
    const f2 = (x: number, y: number): boolean => {
        for (let i = 0; i < 3; ++i) {
            if (x % 3 === y % 3) {
                return false;
            }
            x = Math.floor(x / 3);
            y = Math.floor(y / 3);
        }
        return true;
    };
    const m = 27;
    const valid = new Set<number>();
    const f: number[] = Array(m).fill(0);
    for (let i = 0; i < m; ++i) {
        if (f1(i)) {
            valid.add(i);
            f[i] = 1;
        }
    }
    const d: Map<number, number[]> = new Map();
    for (const i of valid) {
        for (const j of valid) {
            if (f2(i, j)) {
                d.set(i, (d.get(i) || []).concat(j));
            }
        }
    }
    const mod = 10 ** 9 + 7;
    for (let k = 1; k < n; ++k) {
        const g: number[] = Array(m).fill(0);
        for (const i of valid) {
            for (const j of d.get(i) || []) {
                g[i] = (g[i] + f[j]) % mod;
            }
        }
        f.splice(0, f.length, ...g);
    }
    let ans = 0;
    for (const x of f) {
        ans = (ans + x) % mod;
    }
    return ans;
}
  |