918. Maximum Sum Circular Subarray
Description
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length1 <= n <= 3 * 104-3 * 104 <= nums[i] <= 3 * 104
Solutions
Solution 1: Maintain Prefix Maximum
The maximum sum of a circular subarray can be divided into two cases:
- Case 1: The subarray with the maximum sum does not include the circular part, which is the ordinary maximum subarray sum;
 - Case 2: The subarray with the maximum sum includes the circular part, which can be transformed into: the total sum of the array minus the minimum subarray sum.
 
Therefore, we maintain the following variables:
- The minimum prefix sum \(pmi\), initially \(0\);
 - The maximum prefix sum \(pmx\), initially \(-\infty\);
 - The prefix sum \(s\), initially \(0\);
 - The minimum subarray sum \(smi\), initially \(\infty\);
 - The answer \(ans\), initially \(-\infty\).
 
Next, we only need to traverse the array \(nums\). For the current element \(x\) we are traversing, we perform the following update operations:
- Update the prefix sum \(s = s + x\);
 - Update the answer \(ans = \max(ans, s - pmi)\), which is the answer for Case 1 (the prefix sum \(s\) minus the minimum prefix sum \(pmi\) can give the maximum subarray sum);
 - Update \(smi = \min(smi, s - pmx)\), which is the minimum subarray sum for Case 2;
 - Update \(pmi = \min(pmi, s)\), which is the minimum prefix sum;
 - Update \(pmx = \max(pmx, s)\), which is the maximum prefix sum.
 
After the traversal, we return the maximum value of \(ans\) and \(s - smi\) as the answer.
The time complexity is \(O(n)\), where \(n\) is the length of the array. The space complexity is \(O(1)\).
1 2 3 4 5 6 7 8 9 10 11  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13  |  | 
1 2 3 4 5 6 7 8 9 10 11 12  |  |