3697. Compute Decimal Representation
Description
You are given a positive integer n.
A positive integer is a base-10 component if it is the product of a single digit from 1 to 9 and a non-negative power of 10. For example, 500, 30, and 7 are base-10 components, while 537, 102, and 11 are not.
Express n as a sum of only base-10 components, using the fewest base-10 components possible.
Return an array containing these base-10 components in descending order.
Example 1:
Input: n = 537
Output: [500,30,7]
Explanation:
We can express 537 as 500 + 30 + 7. It is impossible to express 537 as a sum using fewer than 3 base-10 components.
Example 2:
Input: n = 102
Output: [100,2]
Explanation:
We can express 102 as 100 + 2. 102 is not a base-10 component, which means 2 base-10 components are needed.
Example 3:
Input: n = 6
Output: [6]
Explanation:
6 is a base-10 component.
Constraints:
1 <= n <= 109
Solutions
Solution 1: Simulation
We can repeatedly perform modulo and division operations on \(n\). Each modulo result multiplied by the current position value \(p\) represents a decimal component. If the modulo result is not \(0\), we add this component to our answer. Then we multiply \(p\) by \(10\) and continue processing the next position.
Finally, we reverse the answer to arrange it in descending order.
The time complexity is \(O(\log n)\), where \(n\) is the input positive integer. The space complexity is \(O(\log n)\) for storing the answer.
1 2 3 4 5 6 7 8 9 10 11 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | |