3653. XOR After Range Multiplication Queries I
Description
You are given an integer array nums of length n and a 2D integer array queries of size q, where queries[i] = [li, ri, ki, vi].
For each query, you must apply the following operations in order:
- Set
idx = li. - While
idx <= ri:- Update:
nums[idx] = (nums[idx] * vi) % (109 + 7) - Set
idx += ki.
- Update:
Return the bitwise XOR of all elements in nums after processing all queries.
Example 1:
Input: nums = [1,1,1], queries = [[0,2,1,4]]
Output: 4
Explanation:
- A single query
[0, 2, 1, 4]multiplies every element from index 0 through index 2 by 4. - The array changes from
[1, 1, 1]to[4, 4, 4]. - The XOR of all elements is
4 ^ 4 ^ 4 = 4.
Example 2:
Input: nums = [2,3,1,5,4], queries = [[1,4,2,3],[0,2,1,2]]
Output: 31
Explanation:
- The first query
[1, 4, 2, 3]multiplies the elements at indices 1 and 3 by 3, transforming the array to[2, 9, 1, 15, 4]. - The second query
[0, 2, 1, 2]multiplies the elements at indices 0, 1, and 2 by 2, resulting in[4, 18, 2, 15, 4]. - Finally, the XOR of all elements is
4 ^ 18 ^ 2 ^ 15 ^ 4 = 31.
Constraints:
1 <= n == nums.length <= 1031 <= nums[i] <= 1091 <= q == queries.length <= 103queries[i] = [li, ri, ki, vi]0 <= li <= ri < n1 <= ki <= n1 <= vi <= 105
Solutions
Solution 1: Simulation
We can directly simulate the operations described in the problem by iterating through each query and updating the corresponding elements in the array \(\textit{nums}\). Finally, we calculate the bitwise XOR of all elements in the array and return the result.
The time complexity is \(O(q \times \frac{n}{k})\), where \(n\) is the length of the array \(\textit{nums}\) and \(q\) is the number of queries. The space complexity is \(O(1)\).
1 2 3 4 5 6 7 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | |
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | |