359. Logger Rate Limiter π
Description
Design a logger system that receives a stream of messages along with their timestamps. Each unique message should only be printed at most every 10 seconds (i.e. a message printed at timestamp t
will prevent other identical messages from being printed until timestamp t + 10
).
All messages will come in chronological order. Several messages may arrive at the same timestamp.
Implement the Logger
class:
Logger()
Initializes thelogger
object.bool shouldPrintMessage(int timestamp, string message)
Returnstrue
if themessage
should be printed in the giventimestamp
, otherwise returnsfalse
.
Example 1:
Input ["Logger", "shouldPrintMessage", "shouldPrintMessage", "shouldPrintMessage", "shouldPrintMessage", "shouldPrintMessage", "shouldPrintMessage"] [[], [1, "foo"], [2, "bar"], [3, "foo"], [8, "bar"], [10, "foo"], [11, "foo"]] Output [null, true, true, false, false, false, true] Explanation Logger logger = new Logger(); logger.shouldPrintMessage(1, "foo"); // return true, next allowed timestamp for "foo" is 1 + 10 = 11 logger.shouldPrintMessage(2, "bar"); // return true, next allowed timestamp for "bar" is 2 + 10 = 12 logger.shouldPrintMessage(3, "foo"); // 3 < 11, return false logger.shouldPrintMessage(8, "bar"); // 8 < 12, return false logger.shouldPrintMessage(10, "foo"); // 10 < 11, return false logger.shouldPrintMessage(11, "foo"); // 11 >= 11, return true, next allowed timestamp for "foo" is 11 + 10 = 21
Constraints:
0 <= timestamp <= 109
- Every
timestamp
will be passed in non-decreasing order (chronological order). 1 <= message.length <= 30
- At most
104
calls will be made toshouldPrintMessage
.
Solutions
Solution 1: Hash Table
We use a hash table \(\textit{ts}\) to store the next available print timestamp for each message. When the shouldPrintMessage
method is called, we check whether the current timestamp is greater than or equal to the next available print timestamp for the message. If so, we update the next available print timestamp to the current timestamp plus 10 and return true
; otherwise, we return false
.
The time complexity is \(O(1)\). The space complexity is \(O(m)\), where \(m\) is the number of distinct messages.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|