3254. Find the Power of K-Size Subarrays I
Description
You are given an array of integers nums of length n and a positive integer k.
The power of an array is defined as:
- Its maximum element if all of its elements are consecutive and sorted in ascending order.
 - -1 otherwise.
 
You need to find the power of all subarrays of nums of size k.
Return an integer array results of size n - k + 1, where results[i] is the power of nums[i..(i + k - 1)].
Example 1:
Input: nums = [1,2,3,4,3,2,5], k = 3
Output: [3,4,-1,-1,-1]
Explanation:
There are 5 subarrays of nums of size 3:
[1, 2, 3]with the maximum element 3.[2, 3, 4]with the maximum element 4.[3, 4, 3]whose elements are not consecutive.[4, 3, 2]whose elements are not sorted.[3, 2, 5]whose elements are not consecutive.
Example 2:
Input: nums = [2,2,2,2,2], k = 4
Output: [-1,-1]
Example 3:
Input: nums = [3,2,3,2,3,2], k = 2
Output: [-1,3,-1,3,-1]
Constraints:
1 <= n == nums.length <= 5001 <= nums[i] <= 1051 <= k <= n
Solutions
Solution 1: Recursion
We define an array \(f\), where \(f[i]\) represents the length of the continuous increasing subsequence ending at the \(i\)-th element. Initially, \(f[i] = 1\).
Next, we traverse the array \(\textit{nums}\) to calculate the values of the array \(f\). If \(nums[i] = nums[i - 1] + 1\), then \(f[i] = f[i - 1] + 1\); otherwise, \(f[i] = 1\).
Then, we traverse the array \(f\) in the range \([k - 1, n)\). If \(f[i] \ge k\), we add \(\textit{nums}[i]\) to the answer array; otherwise, we add \(-1\).
After the traversal, we return the answer array.
The time complexity is \(O(n)\), and the space complexity is \(O(n)\). Here, \(n\) represents the length of the array \(\textit{nums}\).
1 2 3 4 5 6 7 8  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14  |  | 
Solution 2
1 2 3 4 5 6 7 8 9 10 11 12 13  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13  |  |