1749. Maximum Absolute Sum of Any Subarray
Description
You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).
Return the maximum absolute sum of any (possibly empty) subarray of nums.
Note that abs(x) is defined as follows:
- If
xis a negative integer, thenabs(x) = -x. - If
xis a non-negative integer, thenabs(x) = x.
Example 1:
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105-104 <= nums[i] <= 104
Solutions
Solution 1: Dynamic Programming
We define \(f[i]\) to represent the maximum value of the subarray ending with \(nums[i]\), and define \(g[i]\) to represent the minimum value of the subarray ending with \(nums[i]\). Then the state transition equation of \(f[i]\) and \(g[i]\) is as follows:
The final answer is the maximum value of \(max(f[i], |g[i]|)\).
Since \(f[i]\) and \(g[i]\) are only related to \(f[i - 1]\) and \(g[i - 1]\), we can use two variables to replace the array, reducing the space complexity to \(O(1)\).
Time complexity \(O(n)\), space complexity \(O(1)\), where \(n\) is the length of the array \(nums\).
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
1 2 3 4 5 6 7 8 9 10 11 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |